Etiketter

Summa sidvisningar

Sidor

Leta i den här bloggen

tisdag 8 oktober 2013

Fosfataasi entsyymifunktio on nykyään paremmin tiedossa

http://phys.org/news/2013-05-database-phosphate-substrate.html
It is now easier to pinpoint exactly what molecules a phosphatase – a type of protein that's essential for cells to react to their environment – acts upon in human cells, thanks to the free online database DEPOD, created by EMBL scientists. Published today in Science Signaling, the overview of interactions could even help explain unforeseen side-effects of drugs.
Although we know the tool's general purpose, it can sometimes be difficult to tell if a specific pair of precision tweezers belongs to a surgeon or a master jeweller. It is now easier to solve similar conundrums about a type of protein that allows cells to react to their environment, thanks to scientists at the European Molecular Biology Laboratory (EMBL). Published today in Science Signaling, their work offers a valuable resource for other researchers.
Whether in your eye being hit by light, in your blood fighting off disease, or elsewhere throughout your body, cells have to react to changes in their environment. But first, a cell must 'know' the environment has changed. One of the ways in which that information is transmitted within the cell is through tags called phosphate ions, which are added to or removed from specific molecules depending on the exact message that has to be conveyed. The tools the cell uses to remove phosphate ions are proteins called phosphatases. But it's not always obvious what molecules – or substrates – a particular phosphatase acts upon.
ESIMERKKI 
Ajattele inositolifosfaattien  ja fosfoinositidien varaan  rakennettua kehomme  signaalijärjestelmää kuin hienona kellon koneistona! Jos sellaiseen mättää  inositolijärjestelmälle turtaa  muuta fosfaattia- tarkka metbolinen ja signaloiva ajastin tukkeutuu
--
"One of the biggest challenges in phosphatase research is finding substrates, and this is what our work supports," says Maja Köhn from EMBL in Heidelberg, Germany, who led the study. "We've made it easier to create hypotheses about the relationships between phosphatases and their substrates."
Xun Li, a post-doctoral student shared by Köhn's lab and those of Matthias Wilmanns at EMBL in Hamburg, Germany and Janet Thornton at EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, compiled the most complete picture to date of all the phosphatases in , and their substrates. The scientists also grouped phosphatases into families, based on their three-dimensional structure, which can influence what molecules a phosphatase can act upon.
This information allows researchers to easily identify a phosphatase's known substrates, and suggest new substrates based on how similar it is to other phosphatases. The web-like overview of interactions could even help explain unforeseen side-effects of drugs designed to interfere with phosphatases or with their phosphate-adding counterparts, kinases. To enable others to make such connections, Köhn and colleagues have created a free online database, DEPOD.
"When people have unexpected results, this could be a place to find explanations," says Thornton, head of EMBL-EBI. "DEPOD combines a wealth of information that can be explored in a variety of ways, to make it useful not just to phosphatase researchers but to the wider community."


Read more at: http://phys.org/news/2013-05-database-phosphate-substrate.html#jCp
"One of the biggest challenges in phosphatase research is finding substrates, and this is what our work supports," says Maja Köhn from EMBL in Heidelberg, Germany, who led the study. "We've made it easier to create hypotheses about the relationships between phosphatases and their substrates."
Xun Li, a post-doctoral student shared by Köhn's lab and those of Matthias Wilmanns at EMBL in Hamburg, Germany and Janet Thornton at EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, compiled the most complete picture to date of all the phosphatases in , and their substrates. The scientists also grouped phosphatases into families, based on their three-dimensional structure, which can influence what molecules a phosphatase can act upon.
This information allows researchers to easily identify a phosphatase's known substrates, and suggest new substrates based on how similar it is to other phosphatases. The web-like overview of interactions could even help explain unforeseen side-effects of drugs designed to interfere with phosphatases or with their phosphate-adding counterparts, kinases. To enable others to make such connections, Köhn and colleagues have created a free online database, DEPOD.
"When people have unexpected results, this could be a place to find explanations," says Thornton, head of EMBL-EBI. "DEPOD combines a wealth of information that can be explored in a variety of ways, to make it useful not just to phosphatase researchers but to the wider community."


Read more at: http://phys.org/news/2013-05-database-phosphate-substrate.html#jCp

Vielä näkökohta polyfosfaateista

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2084301/
En vielä käännä suomeksi näistä mitään.
Ajattelen asiaa dieetin kannalta: Dieetin on annettava  molekyylejä, joista keho voi saada esiin näitä fosfaatteja moniin tarkoituksiinsa.  Fytiini- muoto  edullinen.

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356573/

Polyfosfaattien muodostuskyvyn tärkeydestä ja niiden funktioista -pohdittavaksi

http://en.wikipedia.org/wiki/Polyphosphate
Tämä on Wikipediasta. Siitä ei ole suomalaista versiota:

Triphosphates are salts or esters of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. When two corners are shared the polyphosphate may have a linear chain structure or a cyclic ring structure. In biology the polyphosphate esters AMP, ADP and ATP are involved in energy transfer. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 pm.[1] GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis and carbohydrate metabolism, respectively.

Structure & Formation

The structure of tripolyphosphoric acid illustrates the principles which define the structures of polyphosphates. It consists of three tetrahedral PO4 units linked together by sharing oxygen atoms. Structurally, the outer tetrahedra share one vertex with the central tetrahedron; the central tetrahedron shares two corners with the other tetrahedra. The corresponding phosphates are related to the acids by loss of the acidic protons. In the case of the cyclic trimer each tetrahedron shares two vertices with adjacent tetrahedra.
Sharing of three corners is possible as in the sheet-structure Phyllosilicates, but such structures occur only under extreme conditions. Three-corner sharing also occurs in phosphorus pentoxide, P4O10, which has a 3-dimensional structure.
Chemically, the polymerization reaction can be seen as a condensation reaction. The process begins with two phosphate units coming together.
2 PO43− + 2 H+ is in equilibrium with P2O74− + H2O
It is shown as an equilibrium reaction because it can go in the reverse direction, when it is known as an hydrolysis reaction because a water molecule is split (Lysed). The process may continue in steps; at each step another PO3 unit is added to the chain, as indicated by the part in brackets in the illustration of polyphosphoric acid. P4O10 can be seen as the end product of condensation reactions, where each tetrahedron shares three corners with the others. Conversely, a complex mix of polymers is produced when a small amount of water is added to phosphorus pentoxide.

Acid-base and complexation properties

Polyphosphates are weak bases. A lone pair of electrons on an oxygen atom can be donated to a hydrogen ion (proton) or a metal ion in a typical Lewis acid-Lewis base interaction. This has profound significance in biology. For instance, adenosine triphosphate (ATP)  is about 25% protonated in aqueous solution at pH 7.[2]
ATP4- + H+ is in equilibrium with ATPH3-, pKa \approx 6.6
Further protonation occurs at lower pH values.
ATP forms chelate complexes with metal ions. The stability constant for the equilibrium
ATP4- + Mg2+ is in equilibrium with MgATP2-, log β \approx 4
is particularly large.[3] The formation of the magnesium complex is a critical element in the process of ATP hydrolysis, as it weakens the link between the terminal phosphate group and the rest of the molecule.[2][4]

The "high energy" phosphate bond

The energy released in ATP hydrolysis,
ATP4- + H2O → ADP3- + Pi-
at ΔG \approx -36.8 kJ mol−1 is large by biological standards. Pi stands for inorganic phosphate, which is protonated at biological pH. However, it is not large by inorganic standards. The term "high energy" refers to the fact that it is high relative to the amount of energy released in the organic chemical reactions that can occur in living systems.

High-polymeric inorganic polyphosphates

High-polymeric inorganic polyphosphates were found in living organisms by L. Liberman in 1890. These compounds are linear polymers containing a few to several hundred residues of orthophosphate linked by energy-rich phosphoanhydride bonds.
Previously, it was considered either as “molecular fossil” or as only a phosphorus and energy source providing the survival of microorganisms under extreme conditions. These compounds are now known to also have regulatory roles, and to occur in representatives of all kingdoms of living organisms, participating in metabolic correction and control on both genetic and enzymatic levels. Polyphosphate is directly involved in the switching-over of the genetic program characteristic of the exponential growth stage of bacteria to the program of cell survival under stationary conditions, “a life in the slow line”. They participate in many regulatory mechanisms occurring in bacteria:
  • They participate in the induction of rpoS, an RNA-polymerase subunit which is responsible for the expression of a large group of genes involved in adjustments to the stationary growth phase and many stressful agents.
  • They are important for cell motility, biofilms formation and virulence.
  • Polyphosphates and exopolyphosphatases participate in the regulation of the levels of the stringent response factor, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a second messenger in bacterial cells.
  • Polyphosphates participate in the formation of channels across the living cell membranes. The above channels formed by polyphosphate and poly-b-hydroxybutyrate with Ca2+ are involved in the transport processes in a variety of organisms.
  • An important function of polyphosphate in microorganisms—prokaryotes and the lower eukaryotes—is to handle changing environmental conditions by providing phosphate and energy reserves. Polyphosphates are present in animal cells, and there are many data on its participation in the regulatory processes during development and cellular proliferation and differentiation—especially in bone tissues and brain.
In humans polyphosphates are shown to play a key role in blood coagulation. Produced and released by platelets[5]they activate Factor XII which is essential for blood clot formation. Furthermore platelets-derived polyphosphates activate blood coagulation factor XII (Hageman factor) that initiates fibrin formation and the generation of a proinflammatory mediator, bradykinin that contributes to leakage from the blood vessels and thrombosis.[6][7]

See also

Orgaanin polyfosfaatti solussa - mietittäväksi asiaksi

Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules
  1. Sean Crosson*,
+ Affiliations
  1. *Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
  2. †Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 USA
  1. Fred Chang, Monitoring Editor
+ Affiliations
  1. Columbia University
  • Submitted April 5, 2013.
  • Revised August 15, 2013.
  • Accepted August 19, 2013.

Abstract

Prokaryotes and eukaryotes synthesize long chains of orthophosphate, known as polyphosphate (polyP), which form dense granules within the cell. PolyP regulates myriad cellular functions and is often localized to specific subcellular addresses through mechanisms that remain undefined. In this study, we present a molecular-level analysis of polyP subcellular localization in the model bacterium, Caulobacter crescentus. We demonstrate that biogenesis and localization of polyP is controlled as a function of the cell cycle, which ensures regular partitioning of granules between mother and daughter. The enzyme polyphosphate kinase 1 (Ppk1) is required for granule production, colocalizes with granules, and dynamically localizes to the sites of new granule synthesis in nascent daughter cells. Localization of Ppk1 within the cell requires an intact catalytic active site and a short, positively-charged tail at the C-terminus of the protein. The processes of chromosome replication and segregation govern both the number and position of Ppk1/polyP complexes within the cell. We propose a multi-step model whereby the chromosome establishes sites of polyP coalescence, which recruit Ppk1 to promote the in situ synthesis of large granules. These findings underscore the importance of both chromosome dynamics and discrete protein localization as organizing factors in bacterial cell biology.

Footnotes

This article has not yet been cited by other articles.

Hakusana Inositolipyrofosfaatit Inositolpyrophosphates

Katson 20  / 125:stä) uusimmasta tieteellisestä artikkelista.

Results: 1 to 20 of 125

1.
Kilari RS, Weaver JD, Shears SB, Safrany ST.
FEBS Lett. 2013 Sep 8. doi:pii: S0014-5793(13)00664-9. 10.1016/j.febslet.2013.08.035. [Epub ahead of print]
PMID:
24021644
[PubMed - as supplied by publisher]
2.
Erneux C, Elong Edimo W.
Biochem J. 2013 Aug 1;453(3):e3-4. doi: 10.1042/BJ20130785.
PMID:
23849059
[PubMed - indexed for MEDLINE]
3.
Ye C, Bandara WM, Greenberg ML.
J Biol Chem. 2013 Aug 23;288(34):24898-908. doi: 10.1074/jbc.M113.493353. Epub 2013 Jul 2.
PMID:
23824185
[PubMed - in process]
4.
Ghosh S, Shukla D, Suman K, Lakshmi BJ, Manorama R, Kumar S, Bhandari R.
Blood. 2013 Aug 22;122(8):1478-86. doi: 10.1182/blood-2013-01-481549. Epub 2013 Jun 19.
PMID:
23782934
[PubMed - in process]
5.
Wilson MS, Livermore TM, Saiardi A.
Biochem J. 2013 Jun 15;452(3):369-79. doi: 10.1042/BJ20130118. Review.
PMID:
23725456
[PubMed - indexed for MEDLINE]
6.
Worley J, Luo X, Capaldi AP.
Cell Rep. 2013 May 30;3(5):1476-82. doi: 10.1016/j.celrep.2013.03.043. Epub 2013 May 2.
PMID:
23643537
[PubMed - in process]
Free PMC Article
7.
Barker CJ, Berggren PO.
Pharmacol Rev. 2013 Feb 19;65(2):641-69. doi: 10.1124/pr.112.006775. Print 2013 Apr. Review.
PMID:
23429059
[PubMed - indexed for MEDLINE]
8.
Niger C, Luciotti MA, Buo AM, Hebert C, Ma V, Stains JP.
J Bone Miner Res. 2013 Jun;28(6):1468-77. doi: 10.1002/jbmr.1867.
PMID:
23322705
[PubMed - in process]
9.
Jadav RS, Chanduri MV, Sengupta S, Bhandari R.
J Biol Chem. 2013 Feb 1;288(5):3312-21. doi: 10.1074/jbc.M112.396556. Epub 2012 Dec 19.
PMID:
23255604
[PubMed - indexed for MEDLINE]
Free PMC Article
10.
Banfic H, Bedalov A, York JD, Visnjic D.
J Biol Chem. 2013 Jan 18;288(3):1717-25. doi: 10.1074/jbc.M112.412288. Epub 2012 Nov 24.
PMID:
23179856
[PubMed - indexed for MEDLINE]
11.
Shears SB, Weaver JD, Wang H.
Adv Biol Regul. 2013 Jan;53(1):19-27. doi: 10.1016/j.jbior.2012.10.002. Epub 2012 Oct 11. Review.
PMID:
23107997
[PubMed - indexed for MEDLINE]
12.
Wundenberg T, Mayr GW.
Biol Chem. 2012 Sep;393(9):979-98. doi: 10.1515/hsz-2012-0133. Review.
PMID:
22944697
[PubMed - indexed for MEDLINE]
13.
Barker CJ, Berggren PO.
Adv Biol Regul. 2012 Sep;52(3):361-8. doi: 10.1016/j.jbior.2012.05.002. Epub 2012 May 26. Review.
PMID:
22884029
[PubMed - indexed for MEDLINE]
14.
Saiardi A.
Adv Biol Regul. 2012 May;52(2):351-9. doi: 10.1016/j.jbior.2012.03.002. Epub 2012 Apr 5. Review.
PMID:
22781748
[PubMed - indexed for MEDLINE]
15.
Saiardi A.
Subcell Biochem. 2012;59:413-43. doi: 10.1007/978-94-007-3015-1_14.
PMID:
22374099
[PubMed - in process]
16.
Wang H, Falck JR, Hall TM, Shears SB.
Nat Chem Biol. 2011 Nov 27;8(1):111-6. doi: 10.1038/nchembio.733.
PMID:
22119861
[PubMed - indexed for MEDLINE]
17.
Szijgyarto Z, Garedew A, Azevedo C, Saiardi A.
Science. 2011 Nov 11;334(6057):802-5. doi: 10.1126/science.1211908.
PMID:
22076377
[PubMed - indexed for MEDLINE]
Free Article
18.
Loss O, Azevedo C, Szijgyarto Z, Bosch D, Saiardi A.
J Vis Exp. 2011 Sep 3;(55):e3027. doi: 10.3791/3027.
PMID:
21912370
[PubMed - indexed for MEDLINE]
Free PMC Article
19.
Chakraborty A, Kim S, Snyder SH.
Sci Signal. 2011 Aug 23;4(188):re1. doi: 10.1126/scisignal.2001958. Review.
PMID:
21878680
[PubMed - indexed for MEDLINE]
Free PMC Article
20.
Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A.
J Biol Chem. 2011 Sep 16;286(37):31966-74. doi: 10.1074/jbc.M111.266320. Epub 2011 Jul 20.
PMID:
21775424
[PubMed - indexed for MEDLINE]
Free PMC Article

lördag 17 augusti 2013

PI4P ja Golgin lipidisignalointi

Äsken  kirjoitin PI5P molekyylistä, joka vaikuttaaq   T-solureseptoriin sen trans- Golgi Net  (TGN) osassa.  Mutta myös PI4P molekyylillä on signalointitehtäviä kertoo seuraava artikkeli:

Traffic. 2012 Nov;13(11):1522-31. doi: 10.1111/j.1600-0854.2012.01406.x. Epub 2012 Sep 7.

 HOG MAP kinaasitien metabolinen aktivaatio  

Snf1/AMPK:lla säätelee  Golissa lipidien signaloitumista.

Metabolic activation of the HOG MAP kinase pathway by Snf1/AMPK regulates lipid signaling at the Golgi.

Source Division of Nephrology & Hypertension, Oregon Health & Science University, Portland, OR 97239, USA.

TIIVISTELMÄ  Abstract

 PI4P tai tarkemmin PI(4)P, fosfatidyl-inositoli- 4- fosfaatti.  on Golgin  laitteen toiminnassa tärkeä säätelijä

Phosphatidylinositol-4-phosphate (PI(4)P) is an important regulator of Golgi function. 

 GOLGI:n  PI(4)P :n aineenvaihdunnalliseen säätelyyn vaaditaan lipidifosfataasia Sax1, jota translokoituu (siirtyy aitiosta toiseen)  endoplasmisen verkoston ja Golgin kalvojen  kesken.

Metabolic regulation of Golgi PI(4)P requires the lipid phosphatase Sac1 that translocates between endoplasmic reticulum (ER) and Golgi membranes. 

Sac1 lipidifosfataasin paikallistuminen vastaa  glukoosipitoisuuksien muutoksiin, vaikka   sac 1 kulkeutumista säätelevät ylävirran signalointitiet ovat vielä tuntemattomia.

 Localization of Sac1 responds to changes in glucose levels, yet the upstream signaling pathways that regulate Sac1 traffic are unknown. 

 Tässä artikkelissaan tutkijat  raportoivat, että mitogeenillä aktivoituva proteiinikinaasi MAPK  Hog1 välittää glukoosin signaalit Golgin laitteeseen ja säätelee Sac1 entsyymin paikallistumista.

Here, we report that mitogen-activated protein kinase (MAPK) Hog1 transmits glucose signals to the Golgi and regulates localization of Sac1.

 He havaitsivat, että Hog1  aktivoituu nopeasti sekä  glukoosipaastosta että glukoosistimulaatiosta, mikä on riippumatonta hyvin luonnehdituista vasteista osmoottiselle stressille, mutta vaatii ylävirran elementtiä Ssk1 ja kontrolloituu Snf1:llä ( hiivan  homologisella AMP-aktivoituvalla kinaasilla AMPK.

We find that Hog1 is rapidly activated by both glucose starvation and glucose stimulation, which is independent of the well-characterized response to osmotic stress but requires the upstream element Ssk1 and is controlled by Snf1, the yeast homolog of AMP-activated kinase (AMPK). 

 Jos eliminoitiin joko Hog1 tai Snf1, hidastui glukoosin indusoima Sac1-lipidifosfataasin translokoituminen Golgin laitteesta endoplasmiseen verkostoon ja sitten viivästyi PI(4)P:n akkumuloituminen Golgiin.

  Elimination of either Hog1 or Snf1 slows glucose-induced translocation of Sac1 lipid phosphatase from the Golgi to the ER and thus delays PI(4)P accumulation at the Golgi.

 Johtopäätöksenään tutkijat  sanoivat, että  tämä  nyt havaittu uusi kommunikaatio HOG tien ja Snf1/AMPK :n kesken  on tarpeellinen Golgin laitteessa tapahtuvalle  lipidisignaloinnin aineenvaihdunnalliselle kontrollille.

We conclude that a novel cross-talk between the HOG pathway and Snf1/AMPK is required for the metabolic control of lipid signaling at the Golgi.

PI5P ja T-solureseptori

http://www.frontiersin.org/T_Cell_Biology/10.3389/fimmu.2013.00080/full

 Solubiologian kriittisiä säätelijöitä ovat nämä fosfoinositidit (PI).
PI( 4,5) P2  eli fosfatidyyli-inositoli 4,5- bifosfaatti , yksinkertaisesti ilmaistuna PIP2 ,  oli ensimmäinen  fosfoinositidi, joka saapui T-solujen  signalointikartoille.

Phosphoinositides are critical regulators in cell biology. Phosphatidylinositol 4,5-bisphosphate, also known as PI(4,5)P2 or PIP2, was the first variety of phosphoinositide to enter in the T cell signaling scene. 

 Fosfatidyyli-inositoli- bisfosfaatit ovat substraatteja eri tyyppisille entsyymeille kuten   fosfolipaasi C (PLC , sen beeta- ja gamma isoformeille) sekä  fosfoinositidi 3- kinaaseille  (PI3K, luokka IA ja IB) , joita on laajalti osallistumassa signaalinjohtumiseen.

Phosphatidylinositol bis-phosphates are the substrates for different types of enzymes such as phospholipases C (β and γ isoforms) and phosphoinositide 3-kinases (PI3K class IA and IB) that are largely involved in signal transduction.

 Vasta viime aikoina on tieteen  valokiila kohdistunut fosfatidyyli-inositoli- monofosfaatteihin  (PIP) signaloivina molekyyleinä nekin.

However until recently, only a few studies highlighted phosphatidylinositol monophosphates as signaling molecules. 

Tämä on johtunut  lähinnä siitä syystä, että joitain näistä fosfoinositideistä on ollut  hyvin vaikea havaita, kuten esim.  fosfatidyyli-inositoli 5- fosfaattia  (PI5P).

This was mostly due to the difficulty of detection of some of these phosphoinositides, such as phosphatidylinositol 5-phosphate, also known as PI5P. 

Eräät hyvin vaikuttavat näytöt osoittavat, että PI5P  omaa osuutta solusignaloinnissa ja /tai solukuljetuksissa.

Some compelling evidence argues for a role of PI5P in cell signaling and/or cell trafficking. 

 Äskettäin ovat artikkelin kirjoittaneet tutkijat raportoineet havaintonsa siitä, että PI5P lisääntyy, kun T-solureseptori triggeröityy.

Recently, we reported the detection of a PI5P increase upon TCR triggering.

Tässä  artikkelissaan he kuvaavat nykyisen tietämyksen PI5P- molekyylin osuudesta T-solun signaloinnissa.

 Here, we describe the current knowledge of the role of PI5P in T cell signaling.

 T-solun biologialle tärkeän PI5P- molekyylin roolin täydellinen karakterisoiminen  on tulevaisia haasteita.

 The future challenges that will be important to achieve in order to fully characterize the role of PI5P in T cell biology, will be discussed.

(PS. ARTIKKELIIN  sisältyy rakenteellisia kuvia, jotka taas selittävät  asian merkitystä  HIV virusten evaasiokyvyn  kannalta, mistä  on  uutta tietoa siitäkin. Kts. blogi Uutta viruksista.  :Nim.  Nef tekijä HIV viruksesta epätasapainottaa TCR signaloinnin tehottomaksi estämällä Lck  reseptorin proksimaaliosissa., mutta  samalla elvyttää solun elossapysymistä (survival) viruksen eduksi.  Samalla myös APC- solun - ja T-solureseptorin  TCR kommunikaatio  häiriintyy eikä virusvastetta kehkeydy T-solulta.
 http://c431376.r76.cf2.rackcdn.com/45995/fimmu-04-00080-HTML/image_m/fimmu-04-00080-g002.jpg
http://c431376.r76.cf2.rackcdn.com/45995/fimmu-04-00080-HTML/image_m/fimmu-04-00080-g002.jpg

fredag 10 maj 2013

Luonnollinen IP6 tärkeä ravinnossa, muttaravinnon lisäfosfaattiyhdiste voi olla problemaattinen. Fosfaattipitoiset E-Lisäaineet

 Koetan poimia esiin fosfaattipitoiset tästä E- lisäaineluettelosta . Lisään myös yhden  "veteraanin"  kommentin, mikä löytyi internetistä. Joku oli kysellyt natrium inosinaatista.

http://hopescience.com/ip6/ip6-faqs/ Kts. E-lisäaineet , fosfaattia sisältävien poimintaa ruotsalaislähteestä.  Voi olla muitakin kuin alle kerätyt.
http://www.slv.se/grupp1/Markning-av-mat/Tillsatser-i-mat/E-nummernyckeln---godkanda-tillsatser/#fun
 
E-nummernyckeln - godkända tillsatser

Kaikki hyvät tarkoitukset on lueteltu funktionimen luettelossa

E 322Lecitin

E 338Fosforsyra
E 339Natriumfosfater
E 340Kaliumfosfater
E 341Kalciumfosfater
E 343Magnesiumfosfater
Övriga tillsatser

E 442Ammoniumfosfatider 
E 450Difosfater
E 451Trifosfater
E 452Polyfosfater
E 1410Monostärkelsefosfat
E 1412Distärkelsefosfat
E 1413Fosfaterat distärkelsefosfat
E 1414Acetylerat distärkelsefosfat
E 1442Hydroxipropyldistärkelsefosfat
E 541Natriumaluminiumfosfat, surt
E 630Inosinsyra
E 631Dinatriuminosinat
E 632Dikaliuminosinat         
E 633 Kalciuminosinat
E 634Kalcium-5'-ribonukleotider

E 635
Dinatrium-5'-ribonukleotider



bdrunner79 HB Userbdrunner79 HB Userbdrunner79 HB Userbdrunner79 HB Userbdrunner79 HB User
Re: sodium inosinate (?)

For clarification purposes, there is certainly no advantage other than aiding taste in foods. And who really NEEDS that, ya know?

Anyways, you have to be careful when you see sodium inosinate on an ingredient list. These aren't generally bad compounds. Disodium inosinate is the sodium salt of inosinic acid. You could have dipotassium inosinate, calcium inosinate, magnesium inosinate, etc. There can be a lot of different salts. Disodium is chosen because it is probably more soluble and easier to make. It is expensive though, which will lead more to the discussion.

On the other end, you have Disodium guanylate, which is the sodium salt of gyanylic acid. Same rules apply.

Because Disodium inosinate is expensive, manufacturers mix in Disodium guanylate, which is cheaper. The combination is sometimes called disodium-5(prime)-ribonucleotides. However, what you don't normally know is that a manufacturer can say "disodium inosinate" and it is actually the compound just mentioned.

Now, check this out. Glutamic acid can also be used in synergy with disodium inosinate. The monosodium salt of glutamic acid is yes, MSG (monosodium glutamate). Pay attention to this. Glutamic acid occurs naturally in some foods, however; they exploit that and if there is MSG added but glutamic acid already present, they can actually count them one in the same and just say glutamic acid, even though there is MSG.

With that in mind, disodium inosinate is not bad in itself at all. There have been many non-clinical studies done with no toxicological effects present. Besides that, it's expensive and they don't add much at all to your food. However, as you can see, with the wording allowable by the FDA, what do they really mean when they say "sodium inosinate"?

Just some food for thought.

måndag 6 maj 2013

Spiller A Genen fytiinitaulukoista

Food
Moisture
%
Serving
Size(g)
Phytin/
serving
Edible
(mg/100g
Phytin
(mg/ 100g)
Almonds( Taylors Sunshine Colony)
5.0
½ c
71
909
347
1280
Apples, raw, not pared
84.4
1
150
94
63
404
Artichoke, Jerusalem, boiled
80.2
1 bud
380
110
29
146
Artichoke, Jerusalem, flour
10.9
1 tbsp
15
70
468
525 ± 24
Artichoke hearts, whole (S & W)
90.0
1
120
11
1
88 ± 2
Avocado
66.1
1
201
2
1
3 ± 2
Bacon Chips, imitation( Bacos, Betty Crocker)
5.0
1 tbsp
15
196
1310
1379 ± 9
Baking mix, buttermilk( Bimix, Martha White)
7.5
1 tbsp
15
27
180
195 ± 14
Barley, infant cereaö, instant cooking, dry
( Gerber)
10.3
1 oz
28
251
897
1000
Barley, pearl, boiled
69.6
½ c
120 g
197
164
539
Beans, broad, boiled
83.7
½ c
120 g
22
18
110
Beans, green, casserole with cheddar cheese
70.0
1 c
124 g
112
90
300
Beans, kidney, canned, drained
69.0
½ c
92
282
307
990 ±2
Beans, lima, immature, raw
67.5
½ c
55
124
226
695 ± 9
Beans, lima, mature, dry, raw
10.3
¼ c
40
404
1010
1126
Beans, navy, mature, dry, boiled, drained
69.0
½ c
85
294
346
1116
Beans, navy, mature, dry, raw
10.9
½ c
62
564
910
1021 ±18
Beans, pinto, raw
67.5
½ c
55
122
222
684 ±5
Beans, snap, green, canned, drained
91.9
½ c
62
56
91
1123
Beets, canned, sliced ( Del Monte)
90.7
½ c
85
2
3
30 ± 7
Blackberries
82.0
½ c
72
7
10
56
Blueberries, sweeten- ed, canned, drained
72.3
½ c
115
3
3
11 ± 4
Boullion cubes, beef flavoured ( Wylers)
4.0
2 cubes
8
7
88
92 ±2
Bouillion cubes, chicken flavoured(Wylers)
4.0
2 cubes
8
3
32
33±2
Brazil nuts
8.5
½ c
70
1259
1799
1966
Bread, French
30.6
1 slice
35
6
17
24
Bread, High Fiber, wheat (Fresh Horizon)
36.4
1 sl
28
65
232
365 ± 2
Bread. High fiber, white(Fresh Horizon)
35.8
1 sl
27
21
79
123 ±1
Bread, Norwegian, flat( Kauli)
4.3
1
10
65
654
683 ± 3
Bread , pita (Giant)
25.0
1
35
43
123
164 ± 2
Bread, pumper-
Nickel (Giant)
34.0
1 sl
32
34
107
162